LDS1-produced oxylipins are negative regulators of growth, conidiation and fumonisin synthesis in the fungal maize pathogen Fusarium verticillioides

نویسندگان

  • Valeria Scala
  • Paola Giorni
  • Martina Cirlini
  • Matteo Ludovici
  • Ivan Visentin
  • Francesca Cardinale
  • Anna A. Fabbri
  • Corrado Fanelli
  • Massimo Reverberi
  • Paola Battilani
  • Gianni Galaverna
  • Chiara Dall'Asta
چکیده

Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin.

Plant oxylipins, produced via the lipoxygenase (LOX) pathway, function as signals in defense and development. In fungi, oxylipins are potent regulators of mycotoxin biosynthesis and sporogenesis. Previous studies showed that plant 9-LOX-derived fatty acid hydroperoxides induce conidiation and mycotoxin production. Here, we tested the hypothesis that oxylipins produced by the maize 9-LOX pathway...

متن کامل

Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides

Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effe...

متن کامل

The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regu...

متن کامل

Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides

Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin le...

متن کامل

PAC1, a pH-regulatory gene from Fusarium verticillioides.

Fumonisins are a group of mycotoxins that contaminate maize and cause leukoencephalomalacia in equine, pulmonary edema in swine, and promote cancer in mice. Fumonisin biosynthesis in Fusarium verticillioides is repressed by nitrogen and alkaline pH. We cloned a PACC-like gene (PAC1) from F. verticillioides. PACC genes encode the major transcriptional regulators of several pH-responsive pathways...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014